University of Amsterdam
Programming Research Group

[®] PSF [8] FUNCTION El{[8] anim
& ackgoraerion : E Breakpoint I control to sin | reset | quit |
processes
Sender [Breakpoint type
Receive-Hessage :
Send-Frane : BIT
Receive-Ack : BIT EILI
K
[®] HESSHGE
: Reuet I
Process status I
con, skip ack-o
aton input{’c) Trace to stdout I
con, skip frame
skip<l> Randon I
con, skip frane
con, skip ack-c
skip<®> E Randon type kip<2> T
Hilily Sk}P ack-o N . skip ack-or-error{ack{0}}
COH, Sk}P frame: fonteol to sals skip frane-conn{frame{l, ’c}}
e skip<0> ’
:2:; :utgutzezg B Special ﬁhiﬁuize:§-or-error(frane(l, ‘c})
i = C ORI g
s Sk%P ackat skip ack=-conn{ack{1}}
skip<2> skip<@>

con, skip ack-or-error{ack{1}} skip ack-or-error{ack(1}}

4

Simulation and Animation of Process
Algebra Specifications

Bob Diertens

Report P9713 September 1997

&3
&S
&3

University of Amsterdam
Department of Computer Science

Programming Research Group

Simulation and animation of process algebra
specifications

Bob Diertens

Report P9713 September 1997

B. Diertens

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7554
e-mail: bobd@wins.uva.nl

Universiteit van Amsterdam, 1997

Simulation and animation of process algebra specifications

Bob Diertens

University of Amsterdam
Programming Research Group

e-mail: bobd @wins.uva.nl

ABSTRACT

We present a platform for simulation and animation of process algebra specifications.
This platform is built with the use of the ToolBus. To ease the creation of animations, a
library of functions has been made. How to use these functions is shown by giving
animations for two simple specifications.

The protocol used for interaction between the simulator, animation and the ToolBus is
given as a PSF specification. An animation for this specification is also given.

1. Introduction

When simulating a process algebra specification, one easily looses track of the current state of the
processes. A visualization of the state seems necessary, especially for larger specifications. We can go
even further. By also visualizing the transitions between the states we get an animation of the simulation of
our specification.

What do we expect from such an animation? First of all, what our simulator already does, show which
actions are performed. We also like to see which processes are active, and how their states are influenced by
an action. But above all, we like to see a picture in which we see objects that represent the processes and
their connecting communication channels, and in which the formerly mentioned items are visualized.

What was needed for this kind of animation, we did not know. In order to inventorize this, we started by
making an animation for a few specifications. First we set up scheme for communication between the
simulator and the animation. We used the ToolBus for this with a simple script, and chose Tcl/Tk for the
implementation language of the animations. We made an animation for the Alternating Bit Protocol, and
used the base of this animation for an animation of a factory.

From our experiments, we identified a bunch of basic functions. We also identified the need to control the
simulation through the animation. So we adapted the ToolBus-script, and experimented some more.

At this moment, we had the feeling that we identified all the basic functions that were needed for making an
animation for some specification. We implemented a library of these functions, and adapted our animations
to make use of this library.

The result is a tool called simanim. It actually is a script which controls the execution of the ToolBus,
which in turn controls the execution of the simulator and animation.

Overview. In the remainder of this chapter, a short description of PSF, the simulator, and the ToolBus are
given. Chapter 2. gives some examples of animation, in chapter 3. some words on the implementation of
simanim are given, and in chapter 4. we will give a specification in PSF of the interaction between
simulator, animation, and the ToolBus.

1.1 PSF

PSF (Process Specification Formalism) is a formal description technique developed for the
specification of concurrent systems. A description of PSF can be found in [MauVel90], [MauVel93],
[Die94], and [DiePon94].

PSF has been designed as the base for a set of tools to support ACP (Algebra of Communicating Processes)
[BerKlo86]. It is very close to the informal syntax normally used in denoting ACP-expressions. The part
of PSF that deals with the description of data is based on ASF (Algebraic Specification Formalism)
[BerHeeKl1i89] To meet the modern needs of software engeneering, PSF supports the modular construction
of specifications and the parametrization of modules.

1.2 The Simulator

The simulator is part of the PSF-Toolkit. It shows traces of selected items, when it simulates a
specification. It is possible to set breakpoints on atoms and processes. The user can choose the actions to
perform from a list, but simulation can also be done randomly. The simulator is also provided with a
process status, which show the internal status of the simulated terms, and with a history mechanism, that
not only makes it possible to go back single steps, but also to jump to a formerly marked state.

1.3 The ToolBus

The ToolBus is a software application architecture developed at the University of Amsterdam by J.A.
Bergstra and P. Klint [BerKl1i95]. It utilizes a scripting language based on process algebra [BaeWeij90] to
describe the communication between software tools. A ToolBus script describes a number of processes that
can communicate with each other and with tools living outside the ToolBus. A language-dependent adapter
that translates between the internal ToolBus data format and the data format used by the individual tools
makes it possible to write every tool in the language best suited for the task(s) it has to perform.

2. Animation

To ease the creation of an animation, a library of functions has been made. All handling of input,
output, drawing, etc, is done automatically by these functions, which leaves us only with the making of a
picture to represent our specification and describing the actions to be performed for the atoms executed by
the simulator. A complete description of these functions is given in appendix B..

In the following sections, we give examples on how to make an animation. The first is an animation for the
Alternating Bit Protocol, and the second for a small factory. The specification in PSF for these are given in
appendix A..

2.1 The Alternating Bit Protocol

First, we have to initialize the windows. The command
1 ANIM windows 440 220 61 10

gives us the picture in Figure 2-1. (Line-numbers are there for reference purposes, they are not part of the
code.)

We see here three buttons, which are disabled at the moment. Below that a canvas (with width 440 and
height 220 in pixels) where the actual animation takes place, and below that a text-window (with width 61
and height 10 in characters) with additional scrollbar. In the text-window, the atoms that are executed by
the simulator are displayed (the same as in the TRACE-window of the simulator when tracing is on).

The picture in the canvas is made with the following commands.

ANIM create_item recti rect 30 110 20 20 "1"
ANIM_create_item ovals oval 120 110 20 20 "sS"
ANIM_ create_item ovalr oval 360 110 20 20 "R"
ANIM create_item rectl rect 240 30 40 10 "L"
ANIM_create_item rectk rect 240 190 40 10 "K"

oUW

[®] anim

Figure 2-1. screendump of animation window

7 ANIM_create_line toS pos 50 110 item ovals chop —arrow last
8 ANIM create_line fromR item ovalr chop pos 430 110 -arrow last

9 ANIM_create_line StoK item ovals se item rectk w —arrow last
10 ANIM_create_line KtoR item rectk e item ovalr sw —arrow last
11 ANIM create_line Rtol item ovalr nw item rectl e —arrow last
12 ANIM create_line LtoS item rectl w item ovals ne —arrow last
The command in line 2 creates a rectangle (indicated by the second argument rect) at the position
30,110 with width and height both 20. The actual width and height are twice these sizes. The sizes given
here indicate the distance from the position 30,110 to the border of the rectangle. (It is done this way to
eliminate rounding of numbers in calculations.)
The first argument is the name of the rectangle, so that it can be referenced later, and the last argument

gives the text to be displayed in the item.

The command in line 7 creates a line with name toS from position 50,110 (pos 50 110) to the border
of the item with name ovals (item ovals chop). And at the end of the line, an arrow is drawn
(-arrow last).

To display text at some positions later on, we do the following.

13 ANIM_textpos_line toS toS s

14 ANIM textpos_line fromR fromR s

15 ANIM_ textpos_line StoK StoK ne

16 ANIM_textpos_item atK rectk s n

17 ANIM_textpos_line KtoR KtoR nw

18 ANIM_textpos_line RtoL RtoL sw

19 ANIM_textpos_item atL rectl n s

20 ANIM_textpos_line LtoS LtoS se
The command in line 13 defines a position for text with the name t oS (the first argument) at line toS (the
second argument) and with anchor s (south), which means that the south of the text will be placed just
above the line. The command in line 16 defines a position with name atK at the south of item rectk with

anchor n (north).

2.1.1 Passive animation
Now we describe the interpretations for the atoms in the trace of the simulator. We do this by
defining the function ANIM_action as follows.
21 proc ANIM action {atom} {

22 if {[regexp {"input\ (' (.*)\)$} Satom match argl]} {

23 ANIM_clear recti

24 ANIM_clear ovals

25 ANIM create_text toS "$argl"

26 ANIM_activate_line toS

27 ANIM_add_clear ovals {line toS} {text toS}

28 } elseif {[regexp {"skip frame-comm\ (frame\ ((.*), " (.*)\)\)S$} \
29 S$atom match argl arg2]} {

30 ANIM_clear ovals

31 ANIM create_text StoK "$arg2 ($argl)"

32 ANIM_activate_line StoK

33 ANIM add_clear rectk {line StoK} {text StoK}

34 } elseif {[regexp { “skip< (0 | 1)>$} Satom match]} {

35 ANIM_clear rectk

36 ANIM create_text atK "$match"

37 ANIM add_clear rectk {text atK}

38 } elseif {[regexp { " skip frame-or-error\ (frame\ ((.*), " (.*)\)\)$} \
39 Satom match argl arg2]} {

40 ANIM clear rectk

41 ANIM create_text KtoR "$arg2 ($argl)"

42 ANIM_ activate_line KtoR

43 ANIM add_clear ovalr {line KtoR} {text KtoR}

44 } elseif {[regexp { "skip frame-or-error\ (frame—error\)$} $Satom \
45 match]} {

46 ANIM clear rectk

47 ANIM create_text KtoR "error"

48 ANIM_ activate_line KtoR

49 ANIM add_clear ovalr {line KtoR} {text KtoR}

50 } elseif {[regexp { output\(’ (.*)\)$} Satom match argl]} {
51 ANIM_clear ovalr

52 ANIM create_text fromR "$argl"

53 ANIM_activate_line fromR

54 ANIM_ add_clear ovalr {line fromR} {text fromR}

55 } elseif {[regexp {“skip ack-comm\ (ack\ ((.*)\)\)$} Satom match \
56 argl]} {

57 ANIM_clear ovalr

58 ANIM create_text RtolL "ack ($argl)"

59 ANIM_activate_line RtoL

60 ANIM_ add_clear rectl {line RtolL} {text RtoL}

61 } elseif {[regexp { “skip<(2 | 3)>$} $atom match]} {

62 ANIM_clear rectl

63 ANIM create_text atL "$match"

64 ANIM add_clear rectl {text atL}

65 } elseif {[regexp { skip ack-or-error\ (ack\ ((.*)\)\)$} Satom \
66 match argl]} {

67 ANIM clear rectl

68 ANIM create_text LtoS "ack ($Sargl)"

69 ANIM_ activate_line LtoS

70 ANIM add_clear recti {line LtoS} {text LtoS}

71 } elseif {[regexp { "skip ack-or—error\ (ack—-error\)$} Satom \
72 match]} {

73 ANIM clear rectl

74 ANIM_ create_text LtoS "error"

75 ANIM_ activate_line LtoS

76 ANIM add_clear ovals {line LtoS} {text LtoS}

77 }

78 }

We take line 22 as an example of how an atom can be matched. First note that in Tcl the value of a variable
with the name var is substituted for $var.

We first explain the regular expression ~input\ (* (.*)\)$. The " and $ match with the begin and end
of the atom in atom, so that we match all of arom and not just a part of it. The \ (and \) match with a (
and a) respectively. We use . * to match with anything and we put it in between () to save the part it
matched (this becomes available in the variable with name argl). The other characters match with
themselves. The variable with name match will contain everything that has been matched.

So in case the atom is input (” a) the regular expression will match and variable arg/ gets the value a.

In line 25 we create a text (the value of argl) on the position toS created earlier with the use of
ANIM textpos_line. The line toS is activated in line 26 (on color displays it gets a different color
and on monochrome displays it becomes solid).

In line 27 we add the line t oS and the text t oS to the clear-list of ovals. With the next match of an atom
(line 28) we give the order to clear this list for ovals (line 10).
Instead of line 27 and 30 we also could have done

ANIM_deactivate_line toS
ANIM_delete_text toS

directly after line 29.

Now let us look at the result of this. After the simulation of the atoms
input(’a)
skip frame-comm(frame(0, ’a))

we get the picture in Figure 2-2.

[®] anim
|
input{’al Ky
skip frame=-conn{frane{0, "al)}
¥

Figure 2-2. alternating bit protocol: passive animation

2.1.2 Active animation

It is also possible to let the animation control the simulation. For this, we have to define a function
ANIM_ choose. When this function is defined, the animation automatically takes control. The buttons
[control to sim |, [reset |, and [quit | are enabled. The first one gives control to the simulator, what gives
us passive animation. The simulator then has a button enabled to give control back to the
animation. The buttons [reset |and [quit | behave the same as in the simulator.

79 proc ANIM choose {atom} {
80 if {[regexp {"input\ (' (.*)\)$} Satom match argl]} {

81 ANIM_ add_list recti Smatch

82 } elseif {[regexp { "skip frame-comm\ (frame\ ((.*), " (.*)\)\)S$} \
83 $atom match argl arg2]} {

84 ANIM_ add_list ovals Smatch

85 } elseif {[regexp { “skip< (0 | 1)>$} Satom match]} {

86 ANIM_add_list rectk $match

87 } elseif {[regexp {“skip frame-or-error\ (frame\ ((.*), " (.*)\)\)S$} \
88 Satom match argl arg2]} {

89 ANIM_add_list rectk $match

90 } elseif {[regexp {"skip frame-or-error\ (frame—-error\)$} Satom \
91 match]} {

92 ANIM_add_list rectk $match

93 } elseif {[regexp { output\ (’ (.*)\)$} $atom match argl]} {

94 ANIM add_list ovalr $match

95 } elseif {[regexp {“skip ack-comm\ (ack\ ((.*)\)\)$} Satom match \
96 argll} {

97 ANIM add_list ovalr $match

98 } elseif {[regexp {"skip<(2]3)>$} $atom match]} {

99 ANIM_ add_list rectl Smatch
100 } elseif {[regexp { skip ack-or-error\ (ack\ ((.*)\)\)$} Satom \
101 match argl]} {
102 ANIM_ add_list rectl Smatch
103 } elseif {[regexp { skip ack-or-error\ (ack—error\)$} Satom \

104 matchl} {

105 ANIM_ add_list rectl Smatch
106 }
107 }

For each atom in the choose-list of the simulator the above function is called. Each item in the animation
has its own choose-list. When there are atoms added to a list with the use of ANIM_add_1list, the item
becomes activated (on color displays it gets a different color and on monochrome displays it becomes
stippled). When an activated item is clicked upon with the mouse, a list pops up from which an atom can
be selected for execution. Leaving the list with the mouse makes the list disappear. So the lists can be
examined without making a selection.

An snapshot of active animation is shown in Figure 2-3.

[*] anim

control to sin | reset | quit |

input{-a}
input{“b}
input{‘c}
input{-d}
input{‘e}

Figure 2-3. alternating bit protocol: active animation

2.2 A small factory

The animation functions shown sofar, are satisfactory for displaying processes and their
communications. However, more can be done to make the animations more attractive, such as moving
items, queues, display counters on an information panel, etc.

Here, a few features are shown of which the ones mentioned above are the most important. For this, we use
a small factory consisting of input, output, some stations and conveyor belts. It produces the products A and
B which take slightly different routes through the factory.

We first give the commands for the picture in the canvas of the animation.
1 ANIM_windows 340 200 30 10

ANIM create_item inp rect 30 30 15 15 "I"
ANIM create_item sl rect 30 100 15 15 "1"
ANIM_create_item s2 rect 100 100 15 15 "2"
ANIM create_item s3 rect 170 100 15 15 "3"
ANIM create_item s4 rect 240 100 15 15 "4"
ANIM_create_item s5 rect 240 170 15 15 "5"
ANIM create_item s6 rect 310 170 15 15 "6"
ANIM create_item out rect 310 100 15 15 "O"

OWOoOJoyUd WN

10 ANIM _create_line insl item inp s item sl n —arrow last
11 ANIM_textpos_line insl insl e
12 ANIM create_line outs6 item s6 n item out s —arrow last

13 ANIM textpos_line outs6 outsé6 w

14 ANIM_create_line sls2 item sl e item s2 w —width 15

15 ANIM_create_line s2s3 item s2 e item s3 w —width 15

16 ANIM_create_line s3s4 item s3 e item s4 w —width 15

17 ANIM create_line s3s5 item s3 s pos [ANIM dim s3 x] [ANIM dim s5 y] \
18 item s5 w —width 15

19 ANIM_create_line s4sb5 item s4 s item s5 n —width 15

20 ANIM_ create_line s5s6 item s5 e item s6 w —width 15

This gives us the picture in Figure 2-4.

[anim

L

fl

Figure 2-4. factory

In line 17, we see the use of function ANIM_dim. It is used the get a dimension from its first argument
(here, the x-coordinate of item s3 and the y-coordinate of item s5). The square brackets around it are to
let Tcl/Tk know it has to call the function. It is also possible to do more calculations, for example with the
use of the Tcl/Tk function expr like this

[expr [ANIM dim s3 x] * 2 + 5]

which takes the x-coordinate of s3, multiplies it by 2 and adds 5 to it.

2.2.1 Moving items
Instead of showing that a product is moved from one station to another by means of an arrow and
some text, we actually want to see it moving over the conveyor belt.

‘We define the function ANIM_action as follows.

21 proc ANIM action {atom} {
22 if {[regexp { "input\ ((.*)\)$} Satom match argl]} {

23 ANIM create_text insl "$argl"

24 ANIM_activate_line insl

25 } elseif {[regexp { “comm-input\ ((.*)\)$} $atom match argl]} {
26 ANIM delete_text insl

27 ANIM_deactivate_line insl

28 ANIM create_item AT1 rect [ANIM dim sl x] [ANIM dim sl y] \
29 7 7 "$argl" —free -color 1

30 } elseif {[regexp { "comm-belt\ (3, 4, .*\)$} S$Satom match argl]} {
31 ANIM_move AT3 rightto [ANIM dim s4 x] -newid AT4

32 } elseif {[regexp { "comm-belt\ (3, 5, .*\)$} $Satom match argl]} {
33 ANIM _move AT3 downto [ANIM dim s5 y] rightto [ANIM_dim s5 x] \
34 -newid ATS

35 } elseif {[regexp { " comm-belt\ (4, 5, .*\)S$} Satom match argl]} {

36 ANIM move AT4 downto [ANIM dim s5 y] —-newid AT5

Line 31 shows how we move a product from station 3 to station 4. With the option —newid we give it a
new name. In this way, we do not have to keep track of which item is at what position (the name of the item

} elseif {[regexp { “comm-belt\ ((.*), (.*), .*\)$} Satom match \
argl arg2]}
ANIM move ATSargl rightto [ANIM dim s$arg2 x] —newid ATSarg2
} elseif {[regexp { " comm-output\ ((.*)\)$} Satom match argl]} {
ANIM_destroy_item AT6
ANIM create_text outs6 "$argl"
ANIM_ activate_line outsé6
} elseif {[regexp { output\((.*)\)$} Satom match argl]} {
ANIM delete_text outsé6
ANIM deactivate_line outs6

}

indicates its location).

In lines 28 and 29, items are created with the options —free and ~color. The option —free indicates
that this item has to be freed (destroyed) on a reset. The option —color x indicates that the color for the
item must come from colorset x. Where x may be either 0 or 1, or a colorset created with the function

ANIM_ colorset.

A snapshot of this passive animation is shown in Figure 2-5

[anim

conn-belt{3, 4, A [
comnn=input (B}
conn-belt{l, 2, B)
conn-belt{2, 3, B)
conn-belt{5, 6, A}
input{A}
comn=input {A}
conn-belt{l, 2, A
input{B}

fl

Figure 2-5. factory: passive animation

The function for active animation is given below.
49 proc ANIM choose {atom} {

50
51
52
53
54
55
56
57
58
59
60
61
62 1}

if {[regexp {“input\ ((.*)\)S$} $atom match argl]} {
ANIM add_list inp $match

} elseif {[regexp { " comm-input\ ((.*)\)S$} $atom match argl]} {
ANIM add_list sl $match

} elseif {[regexp {“comm-belt\ ((.*), (.*), .*\)$} Satom match \

argl arg2]} A

ANIM add_list AT$argl $match

} elseif {[regexp { " comm-output\ ((.*)\)$} Satom match argl]l} {
ANIM add_list s6 Smatch

} elseif {[regexp { output\((.*)\)$} Satom match argl]} {
ANIM_ add_list out $match

}

2.2.2 Queues

Now, we extend our specification of the factory with input- and output-queues.

In the animation, we replace line 2 with
ANIM_create_queue gin 25 30 13 1 —anchor w

and line 9 with
ANIM_ create_queue gout 310 115 1 7 -orient vertical —-anchor s

This gives us a horizontal input-queue of 13 characters long and 1 character high, at position 25,30. By
using the option —orient vertical a vertical output-queue is created.

This is enough for passive animation. However, for active animation we need an item on both sides of the
queue in order to control the input and output of the queue. We now replace line 2 with

ANIM_create_item gin-out rect 22 30 7 15 ""
ANIM_create_gqueue gin [ANIM _dim gin-out e,x] 30 10 1 —anchor w
ANIM_create_item gin-in rect [expr [ANIM dimg gin e,x] + 7] 30 7 15 "In"

and line 9 with
ANIM_create_item gout-in rect [ANIM _dim s6 x] 107 12 8 ""
ANIM_create_queue gout [ANIM dim gout-in x] [ANIM dim gout—-in n,y] 1 5\
—-orient vertical —-anchor s
ANIM create_item gout-out rect [ANIM dimg gout x] \
[expr [ANIM dimg gout n,y] - 8] 12 8 "Out"

The code for passive and active animation is given below

63 proc ANIM_action {atom} {
64 if {[regexp {"g-input\((.*)\)$} $Satom match argl]} {

65 ANIM_add_queue gin $argl

66 } elseif {[regexp { comm-g-input\ ((.*)\)$} Satom match argl]} {
67 ANIM_sub_queue gin

68 ANIM create_text insl $argl

69 ANIM_activate_line insl

70 } elseif {[regexp { " comm-input\ ((.*)\)$} Satom match argl]l} {
71 ANIM delete_text insl

72 ANIM_deactivate_line insl

73 ANIM create_item AT1 rect [ANIM dim sl x] [ANIM dim sl y] \
74 7 7 "$argl" —-free -color 1

75 } elseif {[regexp { "comm-belt\ (3, 4, .*\)$} Satom match argl]} {
76 ANIM _move AT3 rightto [ANIM dim s4 x] -newid AT4

77 } elseif {[regexp { " comm-belt\ (3, 5, .*\)S$} Satom match argl]} {
78 ANIM _move AT3 downto [ANIM dim s5 y] rightto [ANIM_dim s5 x] \
79 -newid ATS

80 } elseif {[regexp { " comm-belt\ (4, 5, .*\)S$} Satom match argl]} {
81 ANIM_move AT4 downto [ANIM dim s5 y] —-newid ATS5

82 } elseif {[regexp {“comm-belt\ ((.*), (.*), .*\)$} Satom match \
83 argl arg2]} {

84 ANIM move AT$argl rightto [ANIM _dim s$arg2 x] —-newid ATS$arg2
85 } elseif {[regexp { " comm-output\ ((.*)\)$} Satom match argl]} {
86 ANIM destroy_item AT6

87 ANIM_ create_text outs6 "Sargl"

88 ANIM_ activate_line outsé6

89 } elseif {[regexp { comm-g-output\ ((.*)\)$} $atom match argl]} {
90 ANIM delete_text outsé6

91 ANIM deactivate_line outs6

92 ANIM_add_gqueue gout $argl

93 } elseif {[regexp { "g-output\((.*)\)$} $atom match argl]} {

94 ANIM_sub_queue gout

95 }

96 }

97 proc ANIM_choose {atom} {
98 if {[regexp {"g-input\((.*)\)$} Satom match argl]} {

99 ANIM add_list gin-in $match
100 } elseif {[regexp {“comm-g-input\ ((.*)\)$} Satom match argl]} {
101 ANIM_add_list gin-out $match
102 } elseif {[regexp { " comm-input\ ((.*)\)$} Satom match argl]l} {
103 ANIM_add_list sl $match
104 } elseif {[regexp { comm-belt\ ((.*), (.*), .*\)$} Satom match argl arg2]} {
105 ANIM add_list AT$argl $match
106 } elseif {[regexp { comm-output\ ((.*)\)$} $atom match argl]} {
107 ANIM_add_list s6 $match
108 } elseif {[regexp { " comm-g-output\ ((.*)\)$} Satom match argl]} {
109 ANIM_add_list gout-in $match
110 } elseif {[regexp { “g-output\((.*)\)$} $atom match argl]} {
111 ANIM add_list gout-out $match
112 }
113 }

A snapshot of this is shown in Figure 2-6.

10

[#] anim

control to =zin | reset | quit |

BEAEB

I
r;;nn-belt(3, 4, A}

q=-input (A} X
q=input{B}
q=-input{B}
conn-belt{l, 2, R)
comn=q=input{A}
conn-input (A}
conn-belt{3, 5, B}
conn-belt{2, 3, A
conn-belt{l, 2, R)

f

Figure 2-6. factory with queues: active animation

2.2.3 Information panel

In order to get an even better view, support for accounting is added. If we want to display the

lengths of the queues and the amount of input and output of the factory, we can add the following code.

114
115
116
117
118
119
120
121
122
123

124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144

ANIM_create_box info queues —-side top —ipadx 1 —-ipady 1 —expand -bw 2 \
-relief ridge
ANIM create_box queues queueinput —-side left
ANIM_create_label queueinput inputtext "queue In" -width 9 —-anchor w
ANIM create_label queueinput inputvar g-input -var -bw 2 \
—-relief sunken -width 2
ANIM_create_box queues queueoutput —-side left
ANIM_ create_label queueoutput outputtext "queue Out" -width 9 —anchor w
ANIM create_label queueoutput outputvar g-output -var -bw 2 \
-relief sunken -width 2

ANIM_ init_var g-input O
ANIM_init_var g-output 0

ANIM create_box info table —-side top -bw 2 -relief ridge

ANIM_create_box table header —-side left

ANIM_create_label header col0 "" —-width 6

ANIM create_label header coll "A" -width 2

ANIM_create_label header col2 "B" -width 2

ANIM_create_box table rowl —side left

ANIM_ create_label rowl input input -width 6 —anchor w

ANIM_create_label rowl inpA input (A) -var —width 2 -bw 2 \
-relief sunken

ANIM create_label rowl inpB input (B) -var -width 2 -bw 2 \
-relief sunken

ANIM_create_box table row2 —-side left

ANIM_ create_label row2 output output -width 6 —anchor w

ANIM_create_label row2 outpA output (A) -var —width 2 -bw 2 \
-relief sunken

ANIM create_label row2 outpB output (B) -var -width 2 -bw 2 \
-relief sunken

ANIM init_array input [list A 0 B 0]
ANIM_init_array output [list A 0 B 0]

At line 114, a box is created with the name queues and parent info. Box info is predefined and is
normally empty. See appendix B. for an explanation of the options. In that box we create the boxes
queueinput and queueoutput. In box queueinput we create two labels, one which contains text
and one which will contain the last value assigned to variable g—input (this is indicated with the option
-var).

11

Variables must be initialized with the use of function ANIM_init_wvar, in order to initialize them again
after a reset.

In box info also a box table is made. In this box we display the arrays input and output, which
must be initialized with function ANIM_init_array.

Now, in the function ANIM_action one can assign values to these variables with either the set or the incr
command of Tcl. We insert after line 65 the commands

incr g-input
incr input ($argl)

after line 67

incr g-input -1
after line 92

incr g-output

and after line 94

incr g-output -1
incr output (Sargl)

Unfortunately, in Tcl these variables must be declared to be global in the function ANIM_action. We do
this by inserting

global g-input g-output input output
after line 63.

How this all looks like can be seen in Figure 2-7.

[®] anim

control to sin | reset | quit |

ABAAA q=input{A}
q=input{B}

conn—input (A} %

conn-belt{2, 3, B} queue In ri-
conn=belt{3, 5, B}

conn-belt(l, 2, R) queue Out |2
conn—q-input{A}

conn—-input (A} A B
conn-belt{2, 3, A} input [10]7
conn-belt{l, 2, R}

conn-belt{3, 4, H) W output |2 |1

Figure 2-7. factory with info-panel: active animation

2.3 Adding Tcl/Tk code

When the given features do not provide the required functionality, it is always possible to write some
additional code. However, care should be taken not to break up the functionality of the existing code. The
animation routines only use names starting with ANIM and anim, and window-paths starting with . anim.
It is best not to use such names and paths.

12

3. Specification of simanim
We shall describe simanim with the use of a specification in PSF. Of course, we used simanim to
develop this specification. The animation can be found in appendix D..

simanim

ToolBus

interface interface

simulator animation

Figure 3-1. processes and communications in simanim

From Figure 3-1, we can distinguish three levels of communication. Between the tools, between the
interfaces, and between the processes in the ToolBus. We shall describe each level separately, starting with
the tools.

3.1 Level 1: The tools

3.1.1 Description of the simulator
On startup, the simulator first receives information about which tool will be in control and if the
other tool is capable of being in control.

When the simulator is in control, it receives the order to send a message. This message can either be an
atom that is executed, or the pushing of the buttons or [quit |. After which the simulator must
receive an acknowledge before going on. When the animation is capable of being in control, it may also be

the pushing of the button | control to anim |.

When the animation is in control, it receives the order to send a message, which must be the list of atoms
that can be executed at that moment. After which the simulator receives a message which atom is selected
or a reset, a quit, or the order to take control.

If the end of simulation of the specification is reached, a messages that states that the end is reached must
be send, instead of a list of atoms. After which the simulator must receive an acknowledge.

3.1.2 Description of the animation
On startup, the animation first receives the request to send information on which tool should take
control and if that tool must keep control.

The animation may now receive an atom that is executed by the simulator, a reset, a list of atoms from
which a choice must be made, the message that states that the end of simulation of the specification is
reached, or the message that the animation must take control.

13

Note: it is not necessary that the animation receives a quit from the simulator, because the animation is
stopped by the ToolBus in that case (see section 3.3).

When the message is a list of atoms, the animation may send an atom chosen from the list, the pushing of
the buttons | reset |, | quit |, or [control to sim |.

When it is a end-message, it may only send the pushing of the buttons [reset], or[quit |.
In the other cases, it sends either an acknowledge or an error, depending on the outcome of the actions of

the animation.

3.1.3 Data modules for the tools
The module Atoms gives us the atoms we can simulate. We use these instead of a specification,
since we are only interested in the communications between the tools.

data module Atoms

begin
exports
begin
sorts
ATOM
functions
f : -=> ATOM
g : —> ATOM
h : -> ATOM
end
end Atoms

The following two modules give the types and identifiers for the tools to use.

data module Tool-Types
begin

exports

begin

sorts
Tterm

end

end Tool-Types

data module Tool-ID

begin
exports
begin
functions

sim : -> Tterm
anim : —-> Tterm

end

imports

Tool-Types
end Tool-ID

The functions given in the module Tool-Messages, represent the messages send and received by the
tools. We use a single module for this instead of a module for each tool, in which we specify the type of
the messages and the messages for that particular tool. In this way, we save a lot of specifying, and it keeps
us focused on the interaction between the tools.

data module Tool-Messages

begin
exports
begin
functions

control-info : -> Tterm
control : Tterm # BOOLEAN -> Tterm
control : Tterm -> Tterm
send-message : —> Tterm
reset : —-> Tterm
quit : —-> Tterm
controltoanim : -> Tterm
controltosim : -> Tterm

choose : Tterm -> Tterm
choice : Tterm -> Tterm
end-of-spec : —-> Tterm

givecontrol : -> Tterm

14

takecontrol : —> Tterm

ack : -> Tterm
error : —> Tterm
end
imports
Booleans,
Tool-Types
end Tool-Messages

The module Booleans that is imported by module Tool-Messages, is taken from the library that
comes with the PSF-Toolkit.

The module Tool-data specifies the functions needed for data-manipulation by the tools.

data module Tool-data

begin
exports
begin
functions
atom : ATOM -> Tterm
control-tool : Tterm —-> Tterm
control-keep : Tterm —-> BOOLEAN
Tterm # Tterm -> Tterm
end
imports
Atoms,
Tool-ID,
Tool-Messages
variables
x : —> Tterm
y : —> BOOLEAN
equations
[1] control-tool (control(x, y)) = x
[2] control-keep(control(x, y)) =y

end Tool-data

3.1.4 Specification of the simulator

The specification of the simulator follows from the description given in section 3.1.1. We use the
atom sim for actions inside the simulator and the atoms sim-snd and sim-rec for communication with
the outside world. The variable control is used for denoting who is in control (the simulator or the
animation), and the variable keep—control to denote if the control may be given to the other tool.

process module Simulator
begin
exports
begin
atoms
sim-snd : Tterm
sim-rec : Tterm
processes
Simulator
end
imports
Tool-data
atoms
sim : Tterm
processes
Run : Tterm # BOOLEAN
sets
of ATOM
A={f, g, h}
of Tterm
Control-set = { control(c, k) | c in Tterm, k in BOOLEAN }
of Tterm
ATOM-set = { atom(a) | a in ATOM }
variables
control : -> Tterm
keep-control : —-> BOOLEAN
definitions
Simulator = sum(c in Control-set,
sim-rec(c) . sim(c) .
Run (control-tool (c), control-keep(c))
)
Run (control, keep-control) =
[control = sim] —-> (
sim-rec (send-message) . (

15

+

)
)

+ [cont

sim-rec (send-message)

+
)

end Simulator

'(

(
sum(a in A, sim(atom(a)) sim-snd (atom(a)))

sim(reset) sim-snd(reset)

+ sim(quit) sim-snd(quit)

) sim-rec (ack) sim(ack)

Run (control, keep-control)

[keep—-control false] -> (
sim(controltoanim) sim-snd(givecontrol)
Run (anim, keep-control)

+

rol = —>

(

anim]
(

sim-snd(choose (atom(f)

| atom(g) | atom(h)))
sim-snd (end-of-spec) sim-rec (ack) sim(ack)
(
sum (a in ATOM-set, sim-rec(a) sim(a))

+ sim-rec(reset) sim(reset)
+ sim-rec(quit) sim(quit)

) Run (control, keep-control)
sim-rec (takecontrol) sim(takecontrol)

Run (sim, keep-control)

sim-snd(quit)

3.1.5 Specification of the animation
The specification of the animation follows from the description 3.1.2. Simular to module
Simulator, we use an atom anim for action inside the animation, and the atoms anim-snd and

anim-rec for communicatio
keep—control is the same a

n with the outside world. Also, the use of the variables control and
s in module Simulator.

The process Choose is used to transform the list of possible atoms, received from the simulator, into a list

term
term

Tterm

OOLEAN

atom(a) | a in ATOM }

hoose (1) | 1 in Tterm }

, anim }

{ false, true }

erm
—> BOOLEAN

of alternatives.
process module Animation
begin
exports
begin
atoms
anim-rec T
anim-snd T
processes
Animation
end
imports
Tool-data
atoms
anim Tterm
processes
Choose Tterm
Choose Tterm
Run Tterm # B
sets
of Tterm
ATOM-set = {
of Tterm
CHOOSE = { c¢
of Tterm
TOOL = { sim
of BOOLEAN
CONTROL-INFO
variables
1 -> Tterm
b —> Tterm
a -> ATOM
control -> Tt
keep—-control
definitions
Animation =

Run

Run (control, ke

anim-rec (control-info)
sum (t in TOOL,
anim-snd (control (t,

sum (ci in CONTROL-INFO,
ci))
(t, ci)

ep—-control)

16

sum (a in ATOM-set, anim-rec(a) . anim(a))
+ anim-rec(reset) . anim(reset)
+ anim-rec (end-of-spec) . anim(end-of-spec) . (
anim(reset) . anim-snd(reset)
Run (control, keep-control)
+ anim(quit) . anim-snd(quit)

)

+ sum(c in CHOOSE, anim-rec(c) . (

Choose(c) . Run(control, keep-control)
+ anim(reset) . anim-snd(reset)
Run (control, keep-control)
+ anim(quit) . anim-snd(quit)
+ [keep-control = false] —-> (
anim(controltosim) . anim-snd(givecontrol)

Run (sim, keep-control)

)
-

anim-snd (ack)
+ anim-snd(error)

)

) . Run(control, keep-control)
+ anim-rec(takecontrol) . anim(takecontrol)
Run (anim, keep-control)
Choose (choose (1 | b)) = anim(b) . anim-snd(choice (b))
+ Choose (choose (1))
Choose (choose (atom(a))) = anim(atom(a)) . anim-snd(choice (atom(a)))

end Animation

3.2 Level 2: The interfaces

The main task of the interfaces is to convert the data the messages of the tools to a form the ToolBus
can handle and vice versa. For this, we introduce two conversion functions and some functions for
deciding the type of the messages.

data module Tool-ToolBus-data
begin
exports
begin
functions
tb-term : Tterm —-> TBterm
conv : Tterm -> TBterm
conv : TBterm —-> Tterm

tool : TBterm —-> TBterm
get-choice : TBterm -> Tterm

is-choose : TBterm —-> BOOLEAN
is—-choice : TBterm -> BOOLEAN
is-control : TBterm -> BOOLEAN
is—-atom : TBterm -> BOOLEAN
end
imports
Tool-data,
ToolBus-Types
variables
t : -> Tterm
n : —> BOOLEAN
a : —> ATOM
equations
[1] conv(t) = tb-term(t)
[2] conv(tb-term(t)) =t
[3] tool(tb-term(control(t, n))) = conv(t)
[4] tool(tb-term(control(t))) = conv(t)
[5] get-choice (tb-term(choice(t))) =t

[6] is-choose (tb-term(choose(t))) = true
[7] is-choice (tb-term(choice(t))) = true
[8] is—-control (tb-term(control(t, n))) = true
[9] is-control (tb-term(control(t))) = true
[10] is-atom(tb-term(atom(a))) = true

end Tool-ToolBus-data

Now, we can specify the interfaces. These interfaces start up the tools and arrange for the communications
with the tools to take place.

17

3.2.1 The interface of the simulator

The atoms simtb-snd and simtb-rec are used for communication with the ToolBus, and the
atoms simint-rec and simint-snd are used for communication with the simulator. The atom
simint-comm represents a communication with data going from the simulator to the interface, and the
atom intsim-comm a communication with data going the other way.
The main process is SimInt, which starts the simulator and interface in parallel and enforces the
communications to take place with the use of the encaps operator.

process module Sim-Interface

begin
exports
begin
atoms
simtb-snd : TBterm
simtb-rec : TBterm
processes
SimInt
end
imports
Simulator, Tool-ToolBus-data
atoms
simint-rec : Tterm
simint-snd : Tterm
simint-comm : Tterm
intsim-comm : Tterm
processes
Interface
sets
of atoms
H = { sim-snd(x), sim-rec(x), simint-rec(x), simint-snd(x)
x in Tterm }
of Tterm
ATOM-set = { atom(a) | a in ATOM }
of Tterm
CHOOSE = { choose (1) | 1 in Tterm }
communications
sim-snd (x) simint-rec(x) = simint-comm(x) for x in Tterm
sim-rec (x) simint-snd(x) = intsim-comm(x) for x in Tterm
definitions
Interface =
sum (t in TBterm, simtb-rec(t)
(
[is-control(t) = true] ->
simint-snd(conv(t))
+ [conv(t) = send-message] —>
simint-snd (send-message)
+ [is-choice(t) = true] —> (
simint-snd (get-choice (t))
)
+ [conv(t) = reset] —>
simint-snd (reset)
+ [conv(t) = quit] ->
simint-snd(quit)
+ [conv(t) = takecontrol] —>
simint-snd (takecontrol)
)
) . Interface
+ sum(a in ATOM-set, simint-rec(a) .
simtb-snd(conv(a)) . simtb-rec(conv(ack))
) . simint-snd(ack) . Interface
+ simint-rec(reset) . simtb-snd(conv(reset))
simtb-rec(conv(ack)) . simint-snd(ack) . Interface
+ simint-rec(quit) . simtb-snd(conv(quit))
+ simint-rec (end-of-spec) . simtb-snd(conv(end-of-spec))
simtb-rec(conv(ack)) . simint-snd(ack) . Interface
+ simint-rec(givecontrol) . simtb-snd(conv(control (anim)))
Interface
+ sum(c in CHOOSE, simint-rec(c) . simtb-snd(conv(c)))
Interface
SimInt = encaps(H, Simulator || Interface)

end Sim-Interface

18

3.2.2 The interface of the animation
The naming of the atoms in the interface for the animation, is done in the same manner as in the
interface for the simulator.

process module Anim-Interface

begin
exports
begin
atoms
animtb-snd : TBterm
animtb-rec : TBterm
processes
AnimInt
end
imports
Animation, Tool-ToolBus-data
atoms
animint-rec : Tterm
animint-snd : Tterm
animint-comm : Tterm
intanim-comm : Tterm
processes
Interface
sets
of atoms
H = { anim-snd(x), anim-rec(x), animint-rec(x), animint-snd(x)
x in Tterm }
communications
anim-snd (x) animint-rec(x) = animint-comm(x) for x in Tterm
anim-rec (x) animint-snd(x) = intanim-comm(x) for x in Tterm
definitions
Interface =
sum (t in TBterm,
animtb-rec(t) . (
[conv(t) = control-info] -> (
animint-snd(control-info)
sum (c in Tterm, animint-rec(c)
animtb-snd(conv(c)) . Interface
)
)
+ [is—atom(t) = true] -> (
animint-snd(conv(t))
)
+ [conv(t) = reset] —> (
animint-snd (reset)
)
+ [conv(t) = end-of-spec] —> (
animint-snd (end-of-spec)
sum (c in Tterm, animint-rec(c) . (
[is—-choice(conv(c)) = true] —-—>
animtb-snd (conv(c))
+ [¢ = reset] -> animtb-snd(conv(c))
+ [¢ = quit] —-> animtb-snd(conv(c))
)
) . Interface
)
+ [conv(t) = takecontrol] -> (
animint-snd(takecontrol) . Interface
)
+ [is-choose(t) = true] —> (
animint-snd(conv(t))
sum (c in Tterm, animint-rec(c) . (
[is-choice(conv(c)) = true] —->
animtb-snd(conv(c))
+ [¢ = reset] —> animtb-snd (conv(c))
+ [¢ = quit] -> animtb-snd(conv(c))
+ [¢ = givecontrol] —>
animtb-snd (conv (control (sim)))
)
) . Interface
)
+ [is-choice(t) = true] —> (
animint-snd(get-choice(t))
)
)
) . (
animint-rec(ack) . animtb-snd(conv (ack))
+ animint-rec(error) . animtb-snd(conv (error))
) . Interface
AnimInt = encaps(H, Animation || Interface)

end Anim-Interface

19

3.3 Level 3: The ToolBus

For each tool, we use a process in the ToolBus. Before we can specify these processes, we have to
specify the primitives for the ToolBus.

The atoms tb-snd-msg, tb-rec—-msg, tb-snd-eval, tb-rec-value, tb-snd-do, and tb—
shutdown, represent their equivalents in ToolBus-scripts. The atom tb-comm-msg represents a
communications between tb—snd-msg and tb-rec—-msg.

process module ToolBus-primitives

begin
exports
begin
atoms
tb-snd-msg : TBterm # TBterm
tb-rec-msg : TBterm # TBterm
tb-comm-msg : TBterm # TBterm
tb-snd-eval : TBid # TBterm
tb-rec-value : TBid # TBterm
tb-snd-do : TBid # TBterm
tb-shutdown
end
imports
ToolBus-Types
communications
tb-snd-msg (t, m) | tb-rec-msg(t, m) = tb-comm-msg(t, m)

for £ in TBterm, m in TBterm
end ToolBus-primitives

Now we can specify the processes, which startup the interfaces in parallel and arrange for the
communications with the interfaces to take place. These two processes are run by the ToolBus in parallel.

3.3.1 The ToolBus-process for the simulator
The atom simtb-comm-snd is used for a communication with data going to the ToolBus, and
simtb-comm-rec for a communication with data going to the interface.

When it is necessary for the simulator to receive an acknowledgement after a message is send, this is send
immediately to the simulator without waiting for the animation to react on this message. This enables the
simulator to perform some tasks, instead of waiting on a message from the animation.

process module Process—Sim

begin
exports
begin
atoms
simtb-comm-snd : TBterm
simtb-comm-rec : TBterm
processes
Process-Sim
end
imports

ToolBus—-primitives,
ToolBus-1ID,
Sim-Interface
processes
TB-Sim : TBterm
sets
of atoms
H = { tb-snd-eval(tid, t), tb-rec-value(tid, t), tb-snd-do(tid, t),
simtb-snd(t), simtb-rec(t) | tid in TBid, t in TBterm }
communications
simtb-snd (t) | tb-rec-value (tid, t) = simtb-comm-snd(t)
for t in TBterm, tid in TBid
simtb-rec (t) | tb-snd-eval (tid, t) = simtb-comm-rec (t)
for t in TBterm, tid in TBid
simtb-rec (t) | tb-snd-do (tid, t) = simtb-comm-rec (t)
for t in TBterm, tid in TBid
variables
t : —> TBterm
definitions
Process-Sim =
encaps (H,
SimInt

20

|| sum(m in TBterm,
tb-rec-msg(psim, m) . tb-snd-do(SIM, m)
TB-Sim(tool (m))

)
TB-Sim(t)
[t

(
conv (anim)] -> (
tb-snd-eval (SIM, conv (send-message))
sum (v in TBterm,
tb-rec-value (SIM, v) . (
[is—-choose(v) = true] -> (
tb-snd-msg (panim, v)

)
+ [v = conv(end-of-spec) 1 —-> (
tb-snd-msg (panim, v)
tb-snd-do (SIM, conv(ack))

)
) - 3
sum (v in TBterm,
tb-rec-msg(psim, v) . (
[is—-choice(v) = true] -> (
tb-snd-do (SIM, v)

)
+ [v = conv(reset)] —-> (
tb-snd-do (SIM, v)

)
+ [v = conv(quit) 1 —-> (
tb-snd-eval (SIM, V)
tb-rec-value (SIM, V)
tb-shutdown
)
+ [is-control(v) = true] -> (
tb-snd-do (SIM, conv(takecontrol))
TB-Sim (tool (v))

)
+ [t = conv(sim)] —-> (
tb-snd-eval (SIM, conv(send-message))
sum (v in TBterm,
tb-rec-value (SIM, v) . (
(
[is—atom(v) = true] -> (
tb-snd-msg (panim, v)
)
+ [v = conv(reset)] —-> (
tb-snd-msg (panim, v)
)
+ [v = conv(quit)] -> (
tb-shutdown
)
) .
tb-snd-do (SIM, conv(ack))
+ [is-control(v) = true] -> (
tb-snd-msg (panim, v)
TB-Sim(tool (v))

)

)
) . TB-Sim(t)
end Process—-Sim

3.3.2 The ToolBus-process for the animation
The atom animtb-comm-snd is used for a communication with data going to the ToolBus, and
animtb-comm-rec for a communication with data going to the interface.

When the animation is in control, it sends the choice made from the choose-list. This choice is send to the
ToolBus-process for the simulator, after which the choice is also send to the animation. It is done this way,
because we want both the choice made and the result of the animation (an acknowledgement or an error).
These two can also be send combined, but there is a possibility that the animation of the choice takes a long
time. In the meantime, the simulator now can calculate the next choose-list.

process module Process-Anim
begin

21

exports
begin
atoms
animtb-comm-snd : TBterm
animtb-comm-rec : TBterm
processes
Process—Anim
end
imports

ToolBus-primitives,

ToolBus-1ID,

Anim-Interface
processes

TB-Anim : TBterm

sets
of atoms
H = { tb-snd-eval(tid, t), tb-rec-value(tid, t), tb-snd-do(tid, t),
animtb-snd(t), animtb-rec(t) | tid in TBid, t in TBterm }
communications
animtb-snd (t) | tb-rec-value (tid, t) = animtb-comm-snd (t)
for t in TBterm, tid in TBid
animtb-rec (t) | tb-snd-eval (tid, t) = animtb-comm-rec(t)
for t in TBterm, tid in TBid
animtb-rec(t) | tb-snd-do(tid, t) = animtb-comm-rec (t)
for t in TBterm, tid in TBid
variables
t : -> TBterm
definitions
Process—-Anim =
encaps (H,
AnimInt

|| tb-snd-eval (ANIM, conv (control-info))
sum (v in TBterm,
tb-rec-value (ANIM, v) . (
[is—control(v) = true] -> (
tb-snd-msg (psim, V)
TB-Anim (tool (v))
)
+ [v = conv(error)] -> (
tb-shutdown
)

)

)
TB-Anim(t) = (
[£t = conv(anim)] -> (
sum (v in TBterm,
tb-rec-msg (panim, v)
tb-snd-eval (ANIM, v) —— choose(..) or end-of-spec
) .
sum (v in TBterm,
tb-rec-value (ANIM, v) . (
[is-choice(v) = true] -> (
tb-snd-msg (psim, v) .
tb-snd-eval (ANIM, v)
(
tb-rec-value (ANIM, conv(ack))
+ tb-rec-value (ANIM, conv(error))
tb-shutdown
)

)
[

+ v = conv(reset) 1 -> (
tb-snd-msg (psim, V)
)
+ [v = conv(quit)] -> (
tb-snd-msg (psim, V)
)
+ [is-control(v) = true] -> (
tb-snd-msg (psim, V)
TB-Anim (tool (v))
)
)
)
)
+ [t = conv(sim)] —> (

sum (v in TBterm,
tb-rec-msg (panim, v) . (
(
[is—atom(v) = true] -> (
tb-snd-eval (ANIM, V)
)
+ [v = conv(reset)] —-> (
tb-snd-eval (ANIM, V)

22

)

) .«
tb-rec-value (ANIM, conv(ack))

+ tb-rec-value (ANIM, conv(error))
tb-shutdown

)

+ [is-control(v) = true] -—>

tb-snd-do (ANIM, conv(takecontrol))
TB-Anim(tool (v))

)
)
) . TB-Anim(t)
end Process—Anim

3.3.3 Specification of the ToolBus

Finally, we can specify the ToolBus itself. We use a process ToolBus-Control to perform a
shutdown when this is requested from one of the processes in the ToolBus. The shutdown is enforced by
the use of the disrupt and prio operators.

process module ToolBus-SimAnim
begin
imports
ToolBus—-primitives,
Process—-Sim,
Process—Anim
atoms
application-shutdown
tbc-shutdown
tbc-app-shutdown
TB-Shutdown
TB-App—-Shutdown
processes
ToolBus—SimAnim
ToolBus—-Control
Application
sets
of atoms
H = { tb-snd-msg(t, m), tb-rec-msg(t, m), tbc-shutdown,
tbc-app-shutdown, tb-shutdown, application-shutdown
t in TBterm, m in TBterm}
P = { TB-Shutdown, TB-App-Shutdown }
communications
tb-shutdown | tbc-shutdown = TB-Shutdown
tbc-app-shutdown | application-shutdown = TB-App-Shutdown

definitions
ToolBus—-SimAnim =
encaps (H, prio(P > atoms, ToolBus-Control || Application))
ToolBus—-Control = tbc-shutdown . tbc-app-shutdown
Application =
disrupt (Process—-Sim || Process—-Anim, application-shutdown)

end ToolBus—-SimAnim

4. Implementation of simanim

As mentioned earlier, simanim is a script that controls the execution of the ToolBus, which in turn
controls the execution of the simulator and the animation. An overview is given in Figure 4-1. The sim-
adapter is needed to preserve the capabilities of the simulator that use the standard input and standard
output. It mainly sets up two pipes to communicate with the simulator. The sim-adapter is written in Perl,
and therefore we need the perl-adapter. The simulator is extended with an interface for communicating
over the pipes.

Animations must be written in Tcl/Tk, and are connected to the ToolBus with the use of the tcl-adapter.

The choice for Tcl/Tk is because the capabilities of Tcl/Tk fulfill our needs, but any language that covers
the needed capabilities could have been chosen, and perhaps in future, support for other languages will be
made.

The script for the ToolBus can be derived from the specification of the processes in the ToolBus in section
3.3. This script can be found in appendix C..

23

simanim

ToolBus

perl-adapter tcl-adapter

sim-adapter

animation

simulator

Figure 4-1. overview of simanim

5. References

[BaeWeij90]

[BerHeeKIl1i89]

[BerKl1i95]

[BerKl1o86]

[Die94]
[DiePon94]
[MauVel90]

[MauVel93]

J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, 1990.

J.A. Bergstra, J. Heering, and P. Klint, “The Algebraic Specification Formalism
ASFE”” in Algebraic Specification, ed. J.A. Bergstra, J. Heering, P. Klint, ACM Press
Frontier Series, pp. 1-66, Addison-Wesley, 1989.

J.A. Bergstra and P. Klint, “The discrete time ToolBus,” report P9502, Programming
Research Group - University of Amsterdam, March 1995.

J.A. Bergstra and J.W. Klop, “Process algebra: specification and verification in
bisimulation semantics,” in Math. & Comp. Sci. II, ed. M. Hazewinkel, J.K. Lenstra,
L.G.L.T. Meertens, eds., CWI Monograph 4, pp. 61-94, North-Holland, Amsterdam,
1986.

B. Diertens, “New Features in PSF I - Interrupts, Disrupts, and Priorities,” report
P9417, Programming Research Group - University of Amsterdam, June 1994.

B. Diertens and A. Ponse, ‘“New Features in PSF 1II - Iteration and Nesting,” report
P9425, Programming Research Group - University of Amsterdam, October 1994.

S. Mauw and G.J. Veltink, “A Process Specification Formalism,” in Fundamenta
Informaticae XIII (1990), pp. 85-139, 10S Press, 1990.

S. Mauw and G.J. Veltink (eds.), Algebraic Specification of Communication
Protocols, Cambridge Tracts in Theoretical Computer Science 36, Cambridge
University Press, 1993.

24

A. PSF specifications

A.l Alternating Bit Protocol

data module Bits
begin
exports
begin
sorts
BIT
functions
0 :=> BIT
1 :=> BIT
flip : BIT -> BIT
end
equations
[B1] flip(0)
[B2] flip(l) = 0
end Bits

|
[

data module Data

begin
exports
begin
sorts
DATA
functions
"a :=> DATA
b :-=> DATA
"¢ :=> DATA
'd :=> DATA
e :-> DATA
end
end Data

data module Frames

begin
exports
begin
sorts
FRAME
functions
frame : BIT # DATA -> FRAME
frame—-error :-> FRAME
end
imports

Data, Bits
end Frames

data module Acknowledgements
begin
exports
begin
sorts
ACK
functions
ack : BIT -> ACK
ack-error :-> ACK
end
imports
Bits
end Acknowledgements

process module ABP
begin
imports
Bits, Data, Frames, Acknowledgements
atoms
input : DATA
send-frame : FRAME
receive-ack-or-error : ACK
receive-frame : FRAME
send-frame-or-error : FRAME
receive-frame-or-error : FRAME
output : DATA
send-ack : ACK

25

receive-ack : ACK
send-ack-or-error : ACK
frame-comm : FRAME
frame-or—-error : FRAME
ack—-comm : ACK
ack-or—error : ACK
processes
Sender
Receive-Message : BIT
Send-Frame : BIT # DATA
Receive-Ack : BIT # DATA

K
K : BIT # DATA
Receiver

Receive-Frame : BIT
Send-Ack : BIT
Send-Message : BIT # DATA

L
L : BIT
ABP
sets
of atoms
H = { send-frame(f), receive-frame (f) | f in FRAME }
+ { send-frame-or-error (f), receive-frame-or-error (f)
| £ in FRAME }
+ { send-ack(a), receive-ack(a) | a in ACK }
+ { send-ack-or-error(a), receive—ack-or—-error(a) | a in ACK }
I = { frame-comm(f), frame-or-error (f) | f in FRAME }
+ { ack-comm(a), ack-or-error(a) | a in ACK }
of BIT
Bit-Set = { 0, 1 }
communications
send-frame (f) | receive-frame(f) = frame—comm(f) for f in FRAME
send-frame-or—-error (f) | receive-frame-or—-error (f) =
frame-or—-error (f) for £ in FRAME
send-ack (a) | receive-ack(a) = ack-comm(a) for a in ACK
send—-ack-or—-error (a) receive—-ack-or—-error (a) =
ack-or—error (a) for a in ACK
variable:
f :-> FRAME
b :-> BIT
d :—=> DATA
a :—> ACK
definitions
Sender = Receive-Message (0)
Receive-Message (b) = sum(d in DATA, input(d) . Send-Frame (b,d))

Send-Frame (b,d) = send-frame (frame (b,d))
Receive-Ack (b,d) = (
receive—-ack-or—-error (ack (fli
+ receive-ack-or-error (ack-err
) . Send-Frame (b, d)
+ receive—-ack-or-error (ack (b))

Receive—-Ack (b, d)

p(b)))
or)

Receive-Message (flip (b))

K = sum(d in DATA, sum (b in Bit-Set, receive—frame (frame(b,d)) . K(b,d)
K(b,d) = (
skip . send-frame-or-error (frame (b, d))
+ skip . send-frame-or-error (frame—error)
) K

Receiver = Receive-Frame (0)
Receive-Frame (b) = (

sum (d in DATA, receive-frame-or—error (frame (flip(b),d)))

+ receive-frame-or-error (frame
) . Send-Ack (flip (b))

—error)

+ sum(d in DATA, receive-frame-or-error (frame (b,d))

Send-Message (b, d)
)

Send-Ack (b) = send-ack (ack (b)) . Receive
Send-Message (b,d) = output(d) . Send-Ack
L = sum (b in Bit-Set, receive-ack (ack (b))
L(b) = (
skip . send-ack-or-error (ack (b))
+ skip . send-ack-or-error (ack—err
) L
ABP = hide (I, encaps(H, Sender || Receiver

end ABP

—Frame (flip (b))
(b)
L(b))
or)
[T x [z

))

26

A.2 Factory

data module Products
begin
exports
begin
sorts
PRODUCT
functions
A : —> PRODUCT
B : —-> PRODUCT
end
end Products

data module Stations
begin
exports
begin
sorts
STATION
function
: —> STATION
—> STATION
—> STATION
—> STATION
: —> STATION
: —> STATION
eg-stat : STATION # STATION -> BOOLEAN
next : STATION # PRODUCT —-> STATION

U WN -

end
imports

Booleans, Products
variables

x : —> STATION

y : —> STATION

p : —-> PRODUCT
equations
[1] eg-stat (x, x) = true
[2] not (eg-stat(x, y)) = true
[3] next(l, p) =
[4] next (2, p) =
[5] next (3, A) =
[6] next (3, B) =
[7] next (4, p) =
[8] next (5, p) =

end Stations

o UTUl B W N

process module Factory

begin
exports
begin
atoms
input : PRODUCT
output : PRODUCT
processes
Start
sets
of PRODUCT
PRODUCT-set = { A, B }
end
imports
Stations
atoms
read-input : PRODUCT
send-input : PRODUCT
comm—-input : PRODUCT
read-output : PRODUCT
send-output : PRODUCT
comm—-output : PRODUCT
to-belt : STATION # STATION # PRODUCT
from-belt : STATION # PRODUCT
comm-belt : STATION # STATION # PRODUCT
processes
Input
Stations
Station : STATION
Output
sets
of STATION

STATION-set = { 1, 2, 3, 4, 5, 6 }

27

of atoms
H = { send-input (p), read-input (p), send-output (p),
read-output (p), to-belt(x, y, p), from-belt(y, p)
| p in PRODUCT, x in STATION, y in STATION }

communications
send-input (p) | read-input (p) = comm-input (p)
for p in PRODUCT
send-output (p) | read-output (p) = comm-output (p)
for p in PRODUCT
to-belt (sl, s2, p) | from-belt (s2, p) = comm-belt (sl, s2, p)
for s1 in STATION, s2 in STATION, p in PRODUCT
variables
s : —> STATION
definitions
Start = encaps(H, Input || Stations || Output)
Input = sum (p in PRODUCT-set, input(p) . send-input(p)) . Input

Stations = merge(s in STATION-set, Station(s))
Station(s) =
[eg-stat (s, 1) = true] -> (
sum (p in PRODUCT,
read-input (p) . to-belt (s, next (s, p), p)
) . Station(s)
)
+ [eg-stat (s, 6) = true] -> (
sum (p in PRODUCT,
from-belt (s, p) . send-output (p)
) . Station(s)
)
+ [and(not (eg-stat (s, 1)), not(eg-stat(s, 6))) = truel] —-> (
sum (p in PRODUCT,
from-belt (s, p) . to-belt(s, next (s, p), p)
) . Station(s)
)
Output = sum (p in PRODUCT, read-output (p) . output(p)) . Output
end Factory

A.3 Factory with Queues

data module S-Products

begin
exports
begin
functions

eg-prod : PRODUCT # PRODUCT -> BOOLEAN
error : —> PRODUCT

end

imports

Products, Booleans
end S-Products

process module S-Factory

begin
imports
Factory,
Sequences {
Elements bound by [
ITEM -> PRODUCT,
eq —-> eg-prod,
error—-element —-> error
] to S-Products
}
atoms

g-input : PRODUCT
g-output : PRODUCT
g-send-input : PRODUCT
g-read-output : PRODUCT
comm-g-input : PRODUCT
comm—g-output : PRODUCT
processes
Start-Q-Factory
In—-Queue : SEQ
Out-Queue : SEQ

sets
of atoms
Q-H = { input(p), output(p), g-send-input (p), g-read-output (p)
p in PRODUCT }
communications

g-send-input (p) | input (p) = comm—-g-input (p) for p in PRODUCT
g-read-output (p) | output(p) = comm-g-output (p) for p in PRODUCT

28

variables
q : —> SEQ
definitions
Start-Q-Factory = encaps(Q-H,
In-Queue (empty-sequence) || Start || Out-Queue (empty-sequence))
In—-Queue (g) = sum(p in PRODUCT-set,
g-input (p) . In-Queue(q " p))
+ [not (eqg(g, empty-sequence))=true] ->
g-send—input (first (q)) . In—-Queue(tail(q))
Out-Queue (gq) = sum(p in PRODUCT-set,

g-read-output (p)

Out-Queue (q "~ p))

+ [not (eq(q, empty-sequence))=true] ->

g-output (first (q))
end S-Factory

Out-Queue (tail (q))

29

B. Reference Guide

Here, a description of the available functions is given. The functions are listed in alphabetical order.
A function description consist of its name followed by its argument, and a description of its behaviour
below this.
Functions are given in bold and arguments of functions in italic. Arguments in between square brackets
are optional. An argument followed by ... indicates that this argument may appear more than once.
Arguments of options separated by | means that they are alternatives.

ANIM_activate_item item
Activates item, which means that it changes color, and when clicked upon, the list with
possible actions for this item is shown.
Note: this is done automatically when the first action is added to [list with the function
ANIM_add_list.

ANIM_activate_line [line
Activates line, which means that the line changes color.

ANIM_activate_list [list
Activates list. When the corresponding item is activated and clicked upon, this list is shown.

Note: this is done automatically when the first action is added to [list with the function
ANIM_add_list.

ANIM_add_clear item duplet ...
Adds the duplets to the clear-list of items. When the function ANIM_clear is called for item,
the lines and texts indicated with the duplets are cleared (deactivated are deleted).
A duplet has the following form

{ type id }
type is either line or text, and id is the name of the line or text.

ANIM_add_list list entry
Add entry to list.

ANIM_add_queue queue string
Add string to queue.

ANIM_change_text_item item string
Change the text displayed on ifem into string.

ANIM_clear item
Clear the things found in the clear-list of itern, added by function ANIM_add_clear.

ANIM_colorlistbox normal select
Sets the color for listboxes to normal and for selected items in the listboxes to select.

ANIM_colorset set type normal active
Sets the normal and active colors for type in colorset set to normal and active.
Typemaybeoneof rect, oval, line, or text. If colorset set does not exist it is made with initial
values copied from colorset 0.
Note: Colorsets 0 and 1 are predefined, but values can be changed with this function.

ANIM_create_box pbox name [options]
Creates a box in the INFO-window with as parent-box pbox, and with id name. The top
parent-box is created by default and is called info.
Options:
-side top | bottom | left | right
Specify to which side of the box the children (boxes and labels) will be placed.
Default top.
-fill none | x|y |both
If a child of this box is smaller than the available space for this child, it is stretched
according the the value given for this option.

30

none No stretching.

X Stretch the children horizontally to fill the entire width of the available space
for the children.

y Stretch the children vertically to fill the entire height of the available space for
the children.

both Stretch the children both horizontally and vertically.

Default none.

-relief flat | groove | raised | ridge | sunken
The type of border (3D-effect) to be drawn around the box.
Default flat.

-bw width
The width of the border.
Default 0.

-ipadx pixels
Pixels specifies how much horizontal space to leave on each side of the children of the
box.
Default 0.

-ipady pixels
Pixels specifies how much vertical space to leave on each side of the children of the
box.
Default 0.

-expand
If this option is given, and if there is still space left unoccupied by the children, the
children are expanded. Extra horizontal space is added to the children for which the
-side option has the value left or right, and extra vertical space is added to the children
for which the -side option has the value top or bottom.

ANIM_create_item item type x y w h string [options]
Creates an item of fype with the center at x,y and with width 2 Ow and height 2 OA. type can
either be rect for a rectangle or oval for an oval. string is centered on item. [tem serves as
the name in order to make references to it in calls to the other functions.
Options:
-nolist
There will be no list associated with item.
-free
Registers the item as to be freed on a reset.
-color setname
Setname specifies the name of the colorset to be used for ifem. By default there are 2
colorsets available named 0 and 1. New colorsets can be made with ANIM_colorset.
Default 0.

ANIM_create_label box name string [options]
Creates a label with string as text in box.
Options:
-var
string is treated as the name of a variable, which means that the value of the variable is
displayed instead of string. When the variable is updated, the label is updated too.
-relief flat | groove | raised | ridge | sunken
The type of border (3D-effect) to be drawn around the label.
Default flat.
-bw width
The borderwidth of the label.
Default 2.
-width width
The width of the label.

31

Default 0.

-anchor anchor
Specifies how string is to be displayed in the space for the label. Possible values are n,
ne, e, se, s, SW, w, nw, or center. For example, nw means display the top-left corner of
string at the top-left corner of the label.
Default center.

-padx pixels
Extra space on the left and right of the label.
Default 1.
ANIM_create_line line triplet triplet ... [options]
Draws a line from triplet to triplet to A triplet has one of the following forms
pos xy

to indicate position Xx,y, and
item name anchor
to indicate the position of anchor of item name. Possible values for anchor are
nes wnw ne se sw ce chop

Chop means that the line is chopped at the border of item.

Options:

-width width
The width of line.
Default 3.

-arrow none | first | last | both
Specify on which ends of the line to draw arrows.
Default none.

-color setname
Setname specifies the name of the colorset to be used for ifem. By default there are 2
colorsets available named 0 and 1. New colorsets can be made with ANIM_colorset.
Default 0.

-nolower
Normally a line is lowered so that all items are displayed on top of this line. This
option turns this off.

ANIM_create_queue queue x y w h [options]
Creates a queue consisting of a text-window and a scrollbar. It is positioned with the anchor
given by the option -anchor on the position x,y. The text-window has the width w and the
height #. The queue-items in a horizontal queue are separated by a space, and in a vertical
queue they appear one a line. Options:
-orientation horizontal | vertical
Specifies the orientation of queue.
Default horizontal.
-anchor anchor
Specifies the point of queue that will be put on the position x,y. Possible values are n,
ne, e, se, S, SW, W, nw, or center.
Default center.
ANIM_create_text id string
Create a text string on the text-position indicated by id formerly created by either
ANIM_textpos, ANIM_textpos_item, ANIM_textpos_line.
ANIM_deactivate_item item
Opposite of ANIM_activate_item.
ANIM_deactivate_line [line
Opposite of ANIM_activate_line.

32

ANIM_delete_text id
Deletes text from the text-position indicated by id, formerly created with
ANIM_create_text.

ANIM_destroy_item item
Destroys the item indicated by ifem and formerly created by ANIM_ create_item.

ANIM_dim id dimension
Returns the dimension dimension of item id. Possible values for dimension are

Xyceneswnw ne se SW ny s,y ex w,x wid ht

ANIM_diml id dimension
Returns the dimension dimension of line id. Possible values for dimension are

start end start,x start,y end,x end,y

ANIM_dimq id dimension
Returns the dimension dimension of queue id. Possible values for dimension are

Xyceneswnw ne se SW ny s,y ex w,x wid ht

ANIM_init_array name list
Initializes array name with indices and values taken from list. list must consist of a list of
index value index value ... separated by spaces. On a reset, this initialization is also
performed.

ANIM_init_var name value
Initializes variable name with value. On a reset, this initialization is also performed.

ANIM_move item movement ... [options]
Moves item along the path given by the movements, where a movement is one of the
following

left d

right d

upd

down d

leftto x

rightto x

upto y

downto y
Here, d is a distance in pixels, x is a x-coordinate, and y is a y-coordinate.
Options:
-newid id

Changes the id of the item into id.
ANIM_sub_queue queue

Removes the first queue-item from queue.

ANIM_textpos id x y anchor [options]
Creates a text-position with name I id with anchor on position x,y. Possible values are n, ne,
e, se, S, SW, W, nw, or center.
Options:
-noreset
Indicates that the text on this position is not be deleted on a reset.

ANIM_textpos_item id item corner anchor
Creates a text-position with name I id with anchor on corner of item. Possible values are n,
ne, e, se, S, SW, w, nw, or center.

ANIM_textpos_line id line anchor [options]
Creates a text-position with name I id with anchor somewhere along line according to the
options or their defaults. Possible values are n, ne, e, se, s, SW, w, nw, or center.
Options:

33

-d distance
Gives the distance from the beginning of the line for the position of the anchor.
distance must be given as a fraction (from 0.0 to 1.0) of the length of the line (or
segment)
Default 0.5.

-s segment
segment indicates to which part of the line the calculation for the position of the anchor
are done.
Default 1.

ANIM_windows canvasw canvash textw texth
Initializes the windows with canvaswandcanvash for the width and height of the canvas, and
with textwandtexth for the width and height, in number of characters, of the text-window.
It also creates a box next to the text-window with name info, to be used as parent-box for
function ANIM_create_box.

34

C. ToolBus script

process PSIM is
let SIM : sim,

S : str,
A : str,
T : str,
N : int

in
execute (sim, SIM?)
rec-msg (sim, control(T?, N?))
snd-do (SIM, control (T, N))
(
if equal (T, "anim") then
snd-eval (SIM, get-text) .
(
rec-value (SIM, choose (S?))
snd-msg (anim, choose(S))
+ rec-value (SIM, end) .
snd-msg (anim, end)
snd-do (SIM, ack)

rec-msg (sim, choice (A?))
snd-do (SIM, choice (A))

+ rec-msg(sim, reset)
snd-do (SIM, reset)

+ rec-msg(sim, quit) .
snd-eval (SIM, quit)
rec-value (SIM, quit)
shutdown ("")

+ rec-msg(sim, control (T?))
snd-do (SIM, take-control)

)

else
snd-eval (SIM, get-text) .
(
(
rec-value (SIM, atom(S?))
snd-msg (anim, atom(S))
+ rec-value (SIM, reset)
snd-msg (anim, reset)
+ rec-value (SIM, quit)
shutdown ("")
) . snd-do (SIM, ack)

+ rec-value (SIM, control(T?))
snd-msg (anim, control(T))

)

fi
) * delta
endlet

#define ANIM_DONE_OR_ERROR \
(\
rec-value (ANIM, ack) \
+ rec-value (ANIM, error) . \
shutdown ("error") \

)

process PANIM is
let ANIM : anim,
S : str,
A : str,
T : str,
N : int
in
execute (anim, ANIM?)
snd-eval (ANIM, control-info)
(
rec-value (ANIM, control (T?, N?))
+ rec-value (ANIM, error)
shutdown ("")
) .
snd-msg (sim, control (T, N))
(
if equal (T, "anim") then
(
rec-msg (anim, choose (S?))
snd-eval (ANIM, choose(S))

35

+ rec-msg(anim, end)
snd-eval (ANIM, end)

) .
rec-value (ANIM, choice (A?))
snd-msg (sim, choice (A))
snd-eval (ANIM, action(A))
ANIM DONE_OR_ERROR

+ rec-value (ANIM, reset) .
snd-msg (sim, reset)
snd—-eval (ANIM, reset)
rec-value (ANIM, ack)

+ rec-value (ANIM, quit) .
snd-msg (sim, quit)

+ rec-value (ANIM, control(T?))
snd-msg (sim, control(T))

else

rec-msg (anim, atom(S?))
snd-eval (ANIM, action(S))

+ rec-msg(anim, reset)
snd-eval (ANIM, reset)

) . ANIM_DONE_OR_ERROR

+ rec-msg(anim, control(T?)) .
snd—-do (ANIM, take—-control)
fi
) * delta
endlet

tool sim is {command = SIM_ADAPTER }
tool anim is {command = ANIM_ADAPTER }

toolbus (PSIM, PANIM)

36

Animation of simanim

ANIM_windows 480 220 45 10

ANIM create_item TSIM rect 140 30 20 15 ""
ANIM_create_item TANIM rect 340 30 20 15 ""
ANIM create_item ISIM rect 140 100 20 15 ""
ANIM_ create_item IANIM rect 340 100 20 15 ""
ANIM_ create_item SIM rect 140 170 20 15 "SIM"
ANIM_ create_item ANIM rect 340 170 20 15 "ANIM"

ANIM create_line TSIMtoISIM pos [expr [ANIM dim TSIM x] - 8] \
[ANIM dim TSIM s,y] pos [expr [ANIM dim ISIM x] - 8] [ANIM dim ISIMn,y] \
—arrow last

ANIM create_line ISIMtoTSIM pos [expr [ANIM dim ISIM x] + 8] \
[ANIM dim ISIM n,y] pos [expr [ANIM dim TSIM x] + 8] [ANIM dim TSIM s,y] \
—arrow last

ANIM create_line ISIMtoSIM pos [expr [ANIM dim ISIM x] - 8] \
[ANIM dim ISIM s,y] pos [expr [ANIM dim SIM x] — 8] [ANIM dim SIM n,y] \
—arrow last

ANIM create_line SIMtoISIM pos [expr [ANIM dim SIM x] + 8] \
[ANIM dim SIM n,y] pos [expr [ANIM dim ISIM x] + 8] [ANIM dim ISIM s,y] \
—arrow last

ANIM create_line TANIMtoIANIM pos [expr [ANIM dim TANIM x] - 8] \
[ANIM dim TANIM s,y] pos [expr [ANIM _dim IANIM x] - 8] \
[ANIM _dim IANIM n,y] —arrow last
ANIM create_line IANIMtoTANIM pos [expr [ANIM dim IANIM x] + 8] \
[ANIM dim IANIM n,y] pos [expr [ANIM _dim TANIM x] + 8] \
[ANIM _dim TANIM s,y] —arrow last
ANIM create_line IANIMtoANIM pos [expr [ANIM dim IANIM x] - 8] \
[ANIM dim IANIM s,y] pos [expr [ANIM _dim ANIM x] - 8] [ANIM dim ANIM n,y] \
—arrow last
ANIM create_line ANIMtoIANIM pos [expr [ANIM dim ANIM x] + 8] \
[ANIM_dim ANIM n,y] pos [expr [ANIM dim IANIM x] + 8] [ANIM_dim IANIM s,y] \
—arrow last

ANIM_ create_line TSIMtoTANIM pos [ANIM dim TSIM e, x] \
[expr [ANIM dim TSIM y] + 8] pos [ANIM_dim TANIM w,x] \
[expr [ANIM_dim TANIM y] + 8] —arrow last

ANIM_create_line TANIMtoTSIM pos [ANIM_dim TANIM w,x] \
[expr [ANIM_dim TANIM y] — 8] pos [ANIM dim TSIM e, x] \
[expr [ANIM _dim TSIM y] - 8] —arrow last

ANIM_ textpos toolbus 5 30 w —noreset
ANIM_textpos interfaces 5 100 w —noreset
ANIM_textpos tools 5 170 w —noreset

ANIM create_text toolbus ToolBus

ANIM create_text interfaces interfaces
ANIM_create_text tools tools

ANIM_textpos_item SIM SIM s n
ANIM_textpos_item ANIM ANIM s n

ANIM_textpos_line TSIM-ISIM TSIMtoISIM e
ANIM_textpos_line ISIM-TSIM ISIMtoTSIM w
ANIM_textpos_line ISIM-SIM ISIMtoSIM e
ANIM_textpos_line SIM-ISIM SIMtoISIM w

ANIM_textpos_line TANIM-IANIM TANIMtoIANIM e
ANIM_textpos_line IANIM-TANIM IANIMtoTANIM w
ANIM_textpos_line IANIM-ANIM IANIMtoANIM e
ANIM_ textpos_line ANIM-IANIM ANIMtoIANIM w

ANIM_textpos_line TSIM-TANIM TSIMtoTANIM n
ANIM_textpos_line TANIM-TSIM TANIMtoTSIM s

proc ANIM action {atom} {

if {[regexp {“sim\ (control\ ((.*)\)\)$} $Satom match argl]l} {
ANIM delete_text ISIM-SIM
ANIM_deactivate_line ISIMtoSIM

} elseif {[regexp {“sim\ (ack\)$} Satom match]} {
ANIM delete_text ISIM-SIM
ANIM_deactivate_line ISIMtoSIM

} elseif {[regexp {“sim\ ((.*)\)$} $atom match argl]} {
ANIM delete_text SIM
ANIM delete_text ISIM-SIM
ANIM_create_text SIM "$Sargl"

} elseif {[regexp { “simint-comm\ ((.*)\)$} Satom match argl]} {

37

ANIM delete_text ISIM-SIM
ANIM_deactivate_line ISIMtoSIM
ANIM _delete_text SIM
ANIM create_text SIM-ISIM "$argl"
ANIM_activate_line SIMtoISIM
elseif {[regexp { intsim-comm\ ((.*)\)$} $atom match argl]} {
ANIM delete_text TSIM-ISIM
ANIM_deactivate_line TSIMtoISIM
ANIM create_text ISIM-SIM "$argl"
ANIM activate_line ISIMtoSIM
elseif {[regexp { simtb-comm-snd\ (tb-term\ ((.*)\)\)$} Satom match argl]} {
ANIM delete_text SIM-ISIM
ANIM deactivate_line SIMtoISIM
ANIM_ create_text ISIM-TSIM "$Sargl"
ANIM_activate_line ISIMtoTSIM
elseif {[regexp { “simtb-comm-rec\ (tb-term\ ((.*)\)\)S$} Satom match argl]} {
if {! [regexp {"ack$} S$argl match]} {
ANIM_delete_text TANIM-TSIM
ANIM deactivate_line TANIMtoTSIM

-

[

—

}
ANIM create_text TSIM-ISIM "$argl"
ANIM activate_line TSIMtoISIM
elseif {[regexp { tb-comm-msg\ (panim, tb-term\ ((.*)\)\)$} Satom match argl]} {
ANIM _delete_text ISIM-TSIM
ANIM deactivate_line ISIMtoTSIM
ANIM create_text TSIM-TANIM "S$Sargl"
ANIM_activate_line TSIMtoTANIM
elseif {[regexp { tb-comm-msg\ (psim, tb-term\ ((.*)\)\)$} Satom match argl]l} {
ANIM delete_text IANIM-TANIM
ANIM deactivate_line IANIMtoTANIM
ANIM create_text TANIM-TSIM "S$Sargl"
ANIM_activate_line TANIMtoTSIM
elseif {[regexp { animtb-comm-rec\ (tb—term\ ((.*)\)\)$} Satom match argl]} {
clean ack from animint
ANIM delete_text IANIM-TANIM
ANIM deactivate_line IANIMtoTANIM
ANIM delete_text TSIM-TANIM
ANIM_deactivate_line TSIMtoTANIM
ANIM_create_text TANIM-IANIM "$argl"
ANIM activate_line TANIMtoIANIM
elseif {[regexp { animtb-comm-snd\ (tb-term\ ((.*)\)\)$} $Satom match argl]} {
if {[regexp {“control\(.*\)$} $argl matchl} {
ANIM delete_text TANIM-IANIM
ANIM_deactivate_line TANIMtoIANIM
} else {
ANIM delete_text ANIM-IANIM
ANIM_deactivate_line ANIMtoIANIM

[

—

-

[

}

ANIM delete_text ANIM-IANIM

ANIM_deactivate_line ANIMtoIANIM

ANIM_ create_text IANIM-TANIM "$argl"

ANIM activate_line IANIMtoTANIM
elseif {[regexp { intanim-comm\ ((.*)\)$} $atom match argl]} {
ANIM_delete_text TANIM-IANIM

ANIM deactivate_line TANIMtoIANIM

ANIM create_text IANIM-ANIM "S$Sargl"

ANIM_activate_line IANIMtoANIM
elseif {[regexp { animint-comm\ ((.*)\)$} $Satom match argl]} {
clean after a reset

ANIM_delete_text IANIM-ANIM

ANIM deactivate_line IANIMtoANIM

[

—

ANIM delete_text ANIM

ANIM create_text ANIM-IANIM "S$Sargl"
ANIM_activate_line ANIMtoIANIM

elseif {[regexp {"anim\ ((.*)\)$} $atom match argl]} {
ANIM delete_text IANIM-ANIM
ANIM_deactivate_line IANIMtoANIM

ANIM delete_text ANIM

ANIM create_text ANIM "S$Sargl"

elseif {[regexp { "TB-Shutdown$} $Satom match]} {
ANIM _delete_text ISIM-TSIM

ANIM deactivate_line ISIMtoTSIM

ANIM delete_text IANIM-TANIM

ANIM deactivate_line IANIMtoTANIM

-

[

}

proc ANIM_choose {atom} {
if {[regexp {"sim\ ((.*)\)$} Satom match argl]l} {
ANIM add_list SIM $match

38

e

—— e e e e e e e

elseif {[regexp { simint-comm\ ((.*)\)S$} $atom match argl]} {
ANIM_add_list SIM S$match
elseif {[regexp { intsim-comm\ ((.*)\)$} $atom match argl]} {

ANIM_ add_list ISIM Smatch

elseif {[regexp { simtb-comm-snd\ (tb-term\ ((.*)\)\)$} Satom match argl]} {
ANIM add_list ISIM S$match

elseif {[regexp { “simtb-comm-rec\ (tb-term\ ((.*)\)\)S$} Satom match argl]} {
ANIM add_list TSIM $match

elseif {[regexp { "tb-comm-msg\ (panim, tb-term\ ((.*)\)\)S$} Satom match argl]} {
ANIM_ add_list TSIM Smatch

elseif {[regexp { "tb-comm-msg\ (psim, tb-term\ ((.*)\)\)$} Satom match argl]} {
ANIM add_list TANIM $match

elseif {[regexp { animtb-comm-rec\ (tb—-term\ ((.*)\)\)$} Satom match argl]} {
ANIM add_list TANIM $match

elseif {[regexp { animtb-comm-snd\ (tb-term\ ((.*)\)\)$} S$Satom match argl]l} {
ANIM_ add_list IANIM Smatch

elseif {[regexp { intanim-comm\ ((.*)\)$} $atom match argl]} {
ANIM add_list IANIM $match
elseif {[regexp { animint-comm\ ((.*)\)$} $Satom match argl]} {

ANIM add_list ANIM $match

elseif {[regexp {"anim\ ((.*)\)$} $atom match argl]} {
ANIM_ add_list ANIM Smatch

elseif {[regexp {"TB-Shutdown|TB-App-Shutdown$} Satom match]} {
ANIM add_list TSIM S$match

> ok

@

CONTENTS

INFOAUCHION ..ottt ettt e s st sa e a e nens 1
Lol P S e st st aenent 2
1.2 The SIMUIAtOr .ooviiiiiiic ettt st 2
1.3 The TOOIBUS ..oouiiiiiiiiiieietcee ettt s s st 2
F N 1Y 0T 1 o) TR USRS 2
2.1 The Alternating Bit ProtoCOL cccoiiiiiiiieie ettt 2
2.2 A SMAll fACIOTY ceeeiiiiiiitieiereeet ettt ettt ettt ettt ene 6
2.3 Adding TCUTK COUE .ooviiiriiiiieietcietetete ettt ettt ettt ettt s seeaene 11
Specification Of SIMANIIM ..oo.eiviiriiiiiiieierte ettt sttt et s bt eat et et sbeesaesbeeneesaee 12
3.1 Level 1: TRE tOOIS oottt s 12
3.2 Level 2: The INEIfaCEs ..coiiiiiiiiiieiiiiciieee et s 16
3.3 Level 3: The TOOIBUS ..ottt s 19
Implementation Of SIMANIM c.ocuieiiieiiie ettt et e e et e st et e s e eeesseetesseesesneenseens 22
RELEIENCES ..ttt s 23
PSF SPECIICALIONS .cveiiiiiiiietiitertestetet ettt ettt ettt ettt sttt ettt ettt ae et besbe bbb e e eaenee 24
A.1 Alternating Bit ProtOCOL cooiioiiiieieeeeeee ettt ettt ese et ene 24
A2 FACIOTY oottt st et neer e ne et ene 26
A3 Factory With QUEUES ccoiiiiiiiiiiii ittt 27
Reference GUIAE ccooiiiiiiiiiiiitec ettt s 29
TOOIBUS SCTIPE eeieiieiieiieieiteeteet ettt ettt ettt et et b e s a bbbttt ae et e bt e bt e bt sbe e e b e beneenaenee 34
Animation of SIMANIML ..o.iiiiiiiiiiieecee ettt s bbb aee 36

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 4-1.

LIST OF FIGURES

screendump of animation WindOWccoerieiiirieniinieniinieeetecete ettt 3
alternating bit protocol: passive animationc.ccccececerrerririrenienienineneneseereseeseenenne 5
alternating bit protocol: active animationcccccoceeviererrieneenienienieneeeecenie et 6
216101 o SRR 7
factory: passive ANIMATIONccccecvereeriireeririenieetene ettt ettt ettt et bt et bt e saeenaenaes 8
factory with queues: active animationc.ccocceereerieriereeieeeeneneneneeetese e seesreneeneenees 10
factory with info-panel: active animationcccccoceeverienieniienienieneeieecene et 11
processes and coOmMmMUNICations iN SIMANIM eeverveeriereierieeierieeieee e seeeee e eee e eee e 12
OVErVIEW Of SIMANIML ...oueiuiiiiiiiiiiiiiiitieeeee et 23

ii

Technical Reports of the Programming Research Group

Note: These reports can be obtained using the technical reports overview on
our WWW site

(http://www.wins.uva.nl/research/prog/reports/)or by anonymous ftp to
ftp.wins.uva.nl,

directory pub/programming-research/reports/.

[P9713]

[P9711]

[PO710]
[P9709]

[P9707]
[P9706]
[P9705]
[P9704]
[P9703]

[P9702]

[P9701]
[P9618]

[P9617]

[P9616]
[P9615]

[P9614]

[P9613]
[P9612]

B. Diertens. Simulation and Animation of Process Algebra Specifica-
tions.

L. Moonen. A Generic Architecture for Data Flow Analysis to Support
Reverse Engineering.

B. Luttik and E. Visser. Specification ofRewriting Strategies.

J.A. Bergstra and M.P.A. Sellink. An Arithmetical Module for Ratio-

nals and Reals.

E. Visser. Scannerless Generalized-LR Parsing.

E. Visser. A Family of Syntax Definition Formalisms.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation

of Components for Software Renovation Factories from Context-free
Grammars.

P.A. Olivier. Debugging Distributed Applications Using a Coordination
Architecture.

H.P. Korver and M.P.A. Sellink. A Formal Aziomatization for Alpha-

bet Reasoning with Parametrized Processes.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Reengineering
COBOL Software Implies Specification of the Underlying Dialects.

E. Visser. Polymorphic Syntax Definition.

M.G.J. van den Brand, P. Klint, and C. verhoef. Re-engineering needs
Generic Programming Language Technology.

P.I. Manuel. ANSI Cobol III in SDF + an ASF Definition of a Y2K
Tool.

P.H. Rodenburg. A Complete System of Four-valued Logic.

S.P. Luttik and P.H. Rodenburg. Transformations of Reduction Sys-
tems.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core Technologies

for System Renovation.
L. Moonen. Data Flow Analysis for Reverse Engineering.

J.A. Hillebrand. Transforming an ASF+SDF Specification into a Tool-
Bus Application.

[P9611]
[P9610]

[P9609]
[P9608]

[P9607]

[P9606]

[P9605]

[P9602b]

[P9604]
[P9603]

[P9602]
[P9601]
[P9512]

[P9511]

[P9510]

[P9509]

[P9508]

M.P.A. Sellink. On the conservativity of Leibniz Equality.

T.B. Dinesh and S.M. Uskiidarli. Specifying input and output of visual
languages.

T.B. Dinesh and S.M. Uskiidarli. The VAS formalism in VASE.

J.A. Hillebrand. A small language for the specification of Grid Proto-
cols.

J.J. Brunekreef. A transformation tool for pure Prolog programs: the
algebraic specification.

E. Visser. Solving type equations in multi-level specifications (prelim-
inary version,).

P.R. D’Argenio and C. Verhoef. A general conservative extension the-
orem in process algebras with inequalities.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives
(revised version of P9602).

E. Visser. Multi-level specifications.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering
and system renovation: an annotated bibliography.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives.
P.A. Olivier. Embedded system simulation: testdriving the ToolBus.

J.J. Brunekreef. TransLog, an interactive tool for transformation of
logic programs.

J.A. Bergstra, J.A. Hillebrand, and A. Ponse. Grid protocols based on

synchronous communication: specification and correctness.

P.H. Rodenburg. Termination and confluence in infinitary term
rewriting.

J.A. Bergstra and Gh. Stefanescu. Network algebra with demonic re-
lation operators.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra
for synchronous and asynchronous dataflow.

